Course is closed
Jun 10 - 12, 2020
Registration Deadline
Live Virtual
Course Length
3 Days
Course Fee
Sign-up for Course Updates

This course may be taken individually or as part of the Professional Certificate Program in Machine Learning & Artificial Intelligence.

Machine learning methods drive much of modern data analysis across engineering, science, and commercial applications. For example, search engines, recommender systems, advertisers, and financial institutions employ machine learning algorithms for content recommendation, predicting customer behavior, compliance, or risk. 

This course looks at how the latest tools, techniques, and algorithms driving modern and predictive analysis can be applied in different fields, even when using unstructured data. You'll gain insights about the underlying tools, what kinds of problems they can/cannot solve, how they can be applied effectively, and what issues are likely to arise in practical applications, particularly in the healthcare field.

Participant Takeaways

  • Understand broad opportunities for automation with machine learning
  • Outline key aspects of practical problems that are likely to impact performance
  • Explore modern natural language processing tools, formulations, and problems
  • Be able to discuss scaling issues (amount of data, dimensionality, storage, and computation)
  • See through the process of applying machine learning methods in practice, foresee likely hurdles and possible remedies
  • Grasp what predictive analytics often does not provide
  • Understand current machine learning trends and opportunities that they bring

Who Should Attend

This course is designed for people with working knowledge and experience with machine learning. Those who attend should have a basic understanding of the essential mathematical concepts and theories used in the field. The course assumes an undergraduate degree in computer science or another technical area such as statistics, physics, electrical engineering, etc., with exposure to vectors and matrices, basic concepts of probability. A high-level understanding of programming (thinking in terms of programs) is also beneficial.

  • For professionals whose work involves data hands-on, the course aims to provide a deeper understanding and sharper intuitions about what is possible, what is not, and which methods to consider in what contexts.
  • At the managerial level, the course provides the vision and understanding of the many opportunities, costs, and likely performance hurdles in predictive modeling, especially as they pertain to large amounts of textual (or similar) data.


Laptops are required for this course. Tablets will not be sufficient for the computing activities performed in this course.

Program Outline

This course runs 10:00 am - 3:45pm on Wednesday, 9:00am - 3:30pm on Thursday, and 9:00am - 2:30pm Friday.

Wed: (5.5h)
[10:00am] recommender systems (2h) 
[12:00pm] lunch break (1h)
[1:00pm] unsupervised learning, mixtures, EM (2h)
[3:00pm] coffee break
[3:15pm] time series models (0.5h)
[3:45pm] recurrent neural networks (1h)
Thu: (6h)

[9:00pm] intro to NLP, medical problems (2h)
[11:00am] coffee break
[11:15am] learning lexical representations (1h)
[12:15pm] lunch break (1h)
[1:15pm] ML for drug design, chemistry (1h)
[2:15pm] coffee break
[2:30pm] ML for networks (1h)
[3:30pm] interpretability, transfer (1h)
Fri: (6h)

[9:00am] reinforcement learning (2h)
[11:00am] coffee break
[11:15am] deep RL (1h)
[12:15pm] lunch break (1h)
[1:15pm] robust ML (1h)
[2:15pm] coffee break
[2:30pm] discussion of participant problems, solicited in advance (2h)

Links & Resources