This course is also offered in an on-campus format, meeting simultaneously with the live online cohort.

Register Now
Date(s)
Jun 09 - 13, 2025
Registration Deadline
Location
Live Online
Course Length
5 Days
Course Fee
$4,800
CEUs
3.4 CEUs
Sign-up for Course Updates Watch Course Webinar

Motors are becoming better and cheaper—opening profitable new applications across industries. In this course for engineers and product designers, you will learn to assess and design electric motors, generators, and drive systems, with emphasis on electric drives, including traction drives and drive motors. You will also explore how modern embedded controllers enable command through digital computation, breathing life into electric machines and motion control applications. 

This course may be taken individually or as part of the Professional Certificate Program in Design & Manufacturing.

Course Overview


The melding of advanced embedded control, power electronics, and electric machines has created a new workhorse for industrial and consumer electromechanical energy conversion systems. Electrification will reduce the carbon dioxide output of our economy. Electric motors will replace many other sources of motive power for many industrial purposes. Actively-controlled electric machines are already bringing new profiles for position, speed, and force control, creating consumer products that were previously inconceivable at practical prices.

Electric actuators are increasingly found in just about everything used for daily life, from automobiles to kitchen appliances to smart devices. Modern product design and industrial fabrication demand an understanding of electric machine characteristics, modern control techniques, and associated interactions with electronic drives. Computer-based tools for estimating machine parameters and performance can remarkably speed up a designer's understanding of when different control and machine design assumptions are applicable, and how gracefully these assumptions fail as performance limits are approached. Combinations of motors (electromechanics) and drives (power electronics) can synergistically achieve performance not possible through other means.

This course focuses on the analysis and design of electric motors, generators, and associated power electronic drive systems, placing special emphasis on the design of machines for electric drives, including traction drives, drive motors for automated manufacturing (robots), material handling and drive motors for automotive, aircraft and marine propulsion systems, and associated power electronic drives. Participants will gain extensive hands-on experience by participating in computer-based laboratory exercises in a MATLAB-compatible, open-source scientific analysis tool called Octave. Participants will also engage in a hardware build session using an Infineon “Programmable System on Chip” (PSoC) 5LP to control a machine in our instructional laboratories. The PSoC 5LP is one of a family of processors that can provide sophisticated calculation, reconfigurable hardware, and IoT communication in different applications.

Course exercises will additionally investigate machine performance as affected by design measures such as selection of pole and slot count, winding details, induction machine slot profiles, and optimization of magnets. Computer-based simulation tools will be used to discuss control strategies for different machine types and address optimization techniques, including matching motor design to performance requirements.

Throughout the course, participants will assess performance considerations, trade-offs, and design approaches and access computer facilities and analysis routines for practice in machine analysis and design. Hardware experience will include building and programming a small, motor drive using a processor from a family of IoT-capable programmable controllers.

COVID-19 Updates

We fully expect to resume on-campus Short Programs courses during the Summer of 2022. However, the possibility remains of ongoing disruption and restrictions due to COVID-19 which may require that the course be delivered via live online format. Please read more here.

Certificate of Completion from MIT Professional Education

Design of Electric Motors cert image
Content

The type of content you will learn in this course, whether it's a foundational understanding of the subject, the hottest trends and developments in the field, or suggested practical applications for industry.

Fundamentals: Core concepts, understandings, and tools - 50%|Latest Developments: Recent advances and future trends - 10%|Industry Applications: Linking theory and real-world - 40%
50|10|40
  • Fundamentals: Core concepts, understandings, and tools - 50%
  • Latest Developments: Recent advances and future trends - 10%
  • Industry Applications: Linking theory and real-world - 40%
Delivery Methods

How the course is taught, from traditional classroom lectures and riveting discussions to group projects to engaging and interactive simulations and exercises with your peers.

Lecture: Delivery of material in a lecture format - 50%|Discussion or Groupwork: Participatory learning - 10%|Labs: Demonstrations, experiments, simulations - 40%
50|10|40
  • Lecture: Delivery of material in a lecture format - 50%
  • Discussion or Groupwork: Participatory learning - 10%
  • Labs: Demonstrations, experiments, simulations - 40%
Levels

What level of expertise and familiarity the material in this course assumes you have. The greater the amount of introductory material taught in the course, the less you will need to be familiar with when you attend.

Introductory: Appropriate for a general audience - 25%|Specialized: Assumes experience in practice area or field - 50%|Advanced: In-depth explorations at the graduate level - 25%
25|50|25
  • Introductory: Appropriate for a general audience - 25%
  • Specialized: Assumes experience in practice area or field - 50%
  • Advanced: In-depth explorations at the graduate level - 25%