Downstream Processing

Continuing discoveries in molecular biology, genetics, and process science provide the foundation for new and improved processes and products in today's biochemical process industry. The production of therapeutic proteins and other biologics, made possible by discoveries in biotechnology, generated sales exceeding $300 billion in 2016. 

Biotechnology is a cornerstone for improvement and expansion of the biochemical process industry for production of enzymes, diagnostics, chemicals, pharmaceuticals, and foods. Continued introduction of new technology necessitates innovation in process development scale-up and design as manufacturing lies on the critical path between science and the consumer. 

An integral and cost-intensive part of these processes is associated with downstream processing for product isolation and purification. This course aims to help participants design new, as well as to improve existing, biological manufacturing for downstream processes. 

Lead Instructor(s): 

Charles Cooney


Jul 20, 2020 - Jul 24, 2020

Course Length: 

5 Days

Course Fee: 





  • Open

It is highly recommended that you apply for a course at least 6-8 weeks before the start date to guarantee there will be space available. After that date you may be placed on a waitlist. Courses with low enrollment may be cancelled up to 4 weeks before start date if sufficient enrollments are not met. If you are able to access the online application form, then registration for that particular course is still open.

Registration will close by July 1, 2020

Participant Takeaways: 

Takeways from this course include:

  • Understanding the fundamentals of downstream processing for biochemical product recovery.
  • Assessing the impact of change on overall process performance.
  • Examining traditional unit operations, as well as new concepts and emerging technologies that are likely to benefit biochemical product recovery in the future.
  • Understanding analytical and process validation issues that are critical to successful manufacturing.
  • Strategies for biochemical process analysis and synthesis.
  • Design and operation of unit processes with centrifugation, chromatography, filtration, and membrane processes
  • Introduction to continuous processing, process economics, process synthesis and simulation, and regulatory issues and validation.

Who Should Attend: 

The course covers fundamental principles of downstream processing with practical examples and case studies to illustrate the problems and solutions faced by the practitioner. It is intended to provide both insight into and an overview of downstream processing for individuals actively engaged in process research and development, as well as those who manage and innovate in the biochemical process industry. Scientists and engineers engaged in fermentation and cell culture development attend the course to better understand the context of the whole process. Attendees include:

  • Engineers and scientists interested in design, economics, validation optimization and scale-up of biochemical product recovery;
  • Protein biochemists and chemists involved in design and optimization of biologics recovery processes;
  • Managers responsible for biochemical process development;
  • Entrepreneurs, attorneys, and business leaders seeking an overview and insight into biochemical manufacturing.

Program Outline: 

The course begins with an introduction to the challenges in recovery of biologic products made by fermentation, cell culture, and enzyme technology. Subsequent topics include:

  • Process design: The first steps in downstream processing
  • Biochemical Processing: Overview
  • Virus clearance in cell culture-based therapeutics
  • Centrifugation
  • Chromatography
  • Quality: Beyond pass or fail
  • Filtration fundamentals
  • Extraction case study
  • Monoclonal Antibody case study
  • Process design & economics
  • Process validation
  • Quality by Design
  • Filtration application
  • Future technologies in Bioprocessing

The class is divided into teams early in the week to work as a team on a project that illustrates the concepts from the lectures.

The program is under the direction of Professor Charles L. Cooney. Lectures will be presented by:

  • Dr. Stuart E. Builder, Strategic Biodevelopment, Belmont, CA
  • Dr. Charles L. Cooney, Professor of Chemical and Biochemical Engineering, emeritus at MIT
  • Dr. Steven Cramer, William Weightman Walker Professor of Polymer Engineering at Rensselaer Polytechnic Institute, Troy, New York
  • Ranga Godavarti, Sr. Director, Purification Process Development, Bioprocess R&D Pfizer, Andover, MA
  • Dr. Jean-Francois Hamel, Lecturer & Research Engineer, MIT
  • Dr. Robert Baffi, Executive Vice President of Technical Operations, Bio Marin Pharmaceutical Inc, Novato, CA
  • Dr. James Leung, Research Scientist, MIT Center for Biomedical Innovation
  • Dr. J. Christopher Love, Associate Professor of Chemical Engineering, Koch Institute for Integrative Cancer Research, MIT

Course Schedule: 

View 2020 Course Schedule (pdf, subject to change)

Class runs 9:00 am - 5:30 pm every day except Friday when it ends at 12:00 noon.

Special events include a reception for course participants and faculty on Monday night and a dinner on Thursday evening. All evening activities are included in tuition.

Participants’ Comments: 


"Good grounding in downstream processing which I will be able to apply to [my] day-to-day job."


"I really enjoyed the course and felt that it strengthened my understanding of downstream processes and the considerations you have to make when designing a process."


"Excellent, intellectually promising, and very informative."


"Course provides a comprehensive review of the key aspects of downstream processing from both a technical and economical perspective. Instructors are industry and academic leaders in biotech and provide insight into new technologies for existing application and new applications for existing technology."


"Great balance between basics, advanced topics and academic, real-world applications."


"The depth that the course went into in all aspects of downstream processing was quite sufficient. I was pleased to see not only the physical processes explained in great detail, but the economic modeling and the process design as well. Very enriching."


"Top class staff were able to provide experience based rules of thumb and examples to clarify topics. Topics were relevant and well presented. In addition, the team project while helping students understand the material also helped the social aspect of being in Boston for a week."


"This was a very comprehensive course that gives and operational and business perspective one wouldn't get from operations."


"Having a good understanding of downstream processing will help me and my upstream organization to work more cohesively with downstream so that we can better develop processes with a holistic mindset."


"It is a great opportunity to learn new concepts and remember old ones with high level lectures and team interaction, summarizing it is a great experience."



This course takes place on the MIT campus in Cambridge, Massachusetts. We can also offer this course for groups of employees at your location. Please complete the Custom Programs request form for further details.


Fundamentals: Core concepts, understandings, and tools (40%) 40
Latest Developments: Recent advances and future trends (20%) 20
Industry Applications: Linking theory and real-world (25%) 25
Teamwork on a case study (15%) 15

Delivery Methods: 

Lecture: Delivery of material in a lecture format (75%) 75
Discussion or Groupwork: Participatory learning (25%) 25


Introductory: Appropriate for a general audience (50%) 50
Specialized: Assumes experience in practice area or field (25%) 25
Advanced: In-depth explorations at the graduate level (25%) 25