Technology and Sustainability

The purpose of this class is to address the issues of sustainability and to expand the engineering perspective of this problem. First, we review the concept of sustainability from several points of view including economics, ecology, and business. This discussion addresses the shortcomings of several approaches including “eco-efficiency” and the “triple bottom line."

We then develop a resource accounting perspective in some detail with the emphasis in four areas:

  • Energy resources analysis, energy and exergy flows, balances, efficiencies, primary energy use, energy return on investment, net energy analysis, and renewable energy – all from a thermodynamic perspective.
  • Material resources analysis, including not only the materials used in the delivery of products and services, but also the effects on major material cycles such as carbon, water, and nitrogen. This approach will be expanded to aggregate both fuels and non-fuel materials by using an exergy analysis approach.
  • Life cycle assessment (LCA) of products and services, including variations on the method such as input-output models, hybrid models, consequential LCA and exergy methods that can incorporate ecosystem services.
  • Design for sustainability accounting for the role of ecosystem services in supporting industrial activities, and an assessment of alternative sustainability solution approaches.

The class uses our book Thermodynamics and the Destruction of Resources (Cambridge University Press, 2011) and builds on these topics from a solid basis. Examples will be taken from diverse areas but with special attention to current and emerging chemical and manufacturing processes and product analysis. Participants are encouraged to bring sample cases for discussion and class will include time for hands-on LCA demonstrations.

Note: This course was previously titled "Energy, Sustainability, and Lifecycle Assessment."

Lead Instructor(s): 

Timothy Gutowski


Jul 10, 2017 - Jul 12, 2017

Course Length: 

3 Days

Course Fee: 





  • Open

It is highly recommended that you apply for a course at least 6-8 weeks before the start date to guarantee there will be space available. After that date you may be placed on a waitlist. Courses with low enrollment may be cancelled up to 4 weeks before start date if sufficient enrollments are not met. If you are able to access the online application form, then registration for that particular course is still open.

This course has limited enrollment. Apply early to guarantee your spot.

Participant Takeaways: 

  • Identifying alternative interpretations of sustainability, including economic, ecological, business, and resource accounting.
  • Reviewing thermodynamic principles as an example of a rigorous approach to resource accounting.
  • Analyzing energy transformation and materials transformation processes using various resource accounting approaches.
  • Exploring life cycle assessment (LCA), including advanced LCA methods. Applying these methods to new situations and analyze products and services.
  • Examining resource accounting at multiple scales, including carbon, water, nitrogen, and ecosystem services.

Who Should Attend: 

Who should attend:

This class is intended for professionals from manufacturing, design, energy, and sustainability, as well as for academics (faculty, researchers, and graduate students).

Computer Requirements:

Laptops with the ability to run openLCA are required.

Program Outline: 


Introductions and Outline (Gutowski)

  • Meet and greet, discuss outline, goals of the class
  • Review questionnaire results
  • Start discussion

Sustainability (Gutowski)

  • Brundtland statement and others (triple bottom line, inclusive wealth, planetary boundaries): current versus future well-being, scale and boundaries, aggregation and substitution (weak versus strong) static and dynamic (resilience), wicked and tame (tractable)
  • Multiple states, relative and absolute measures, emphasis on ecosystem services and limits
  • Measures to address climate change (Intergovernmental Panel on Climate Change), energy and carbon in particular
  • Open discussion on the sustainability concept

Resources*: Text Chapter 19, Rockstrom, 2009
*Full references for resources are given at the end of the program outline.

Environmental Accounting (Gutowski)

  • Example problems to introduce:
    •  Key issues of environmental and thermodynamic accounting
    •  Life cycle phases (extraction, materials refinement, manufacturing use and end-of-life)
    •  Boundaries and allocation, unit of service, aggregation, and accuracy

Resources: Text Chapters 4 & 6; Gutowski, 2013; Ashby, 2013

Key thermodynamic concepts (Sekulic)

  • Revisiting the meaning/determination of energy, available energy (exergy), and associated fundamental thermodynamic concepts for open/closed systems
  • Evaluation of physical and chemical exergy, calculation procedures, identification of the environment for a considered system, the reference states
  • Examples of exergy calculation for energy interactions (heat and work) and flow exergies of material streams

Resources: Text Chapters 1, 2, 4, 6


  • Energy for Sustainable Development (Sekulic)
  • Energy resources (global and local)
  • Energy flows (Sankey) and exergy flows (Grassmann) at different systems’ scales
  • Energy conversion efficiencies, traditional and transformational technologies
  • Energy versus environmental and societal trade-offs
  • Energy/exergy flows in materials processing and manufacturing
  • Primary energy use within the sustainability metrics space (metrics aggregation or separation)
  • Examples of exergy losses’ calculations for selected technologies, allocation of internal and external losses

Resources: Text Chapters 5, 8, 11, 15; Smil, V., (2008) Chapters 2, 8, 10, 11; Allwood, J. M., and Cullen, (2012) Parts 1 and 2

LCA Methods & Examples (Gutowski)

  • Methodology, ISO 14000 guidelines
  • Process LCA
  • Input/output methods (expanding boundaries using physical and financial flows)
  • Software, comparisons, examples

Resources: Text Chapters 13, 14; Hendrickson, Lave, and Matthews, 2006

Advanced LCA: Thermodynamic Analysis and Accounting for Ecosystem Services (Bakshi)

  • Energy analysis
  • Accounting for ecosystem services
  • Cumulative exergy and emergy
  • Hands-on demonstration including hybrid LCA

Resources: Text Chapters 3, 12

Advanced LCA: MRIO, Consequential LCA, Improvement Analysis (Bakshi)

  • Demonstrations of new LCA methods including: multi-regional input-output (MRIO) models to assess effects of global trade, consequential LCA (e.g. ethanol and land use)
  • Optimization methods for improvement analysis and design

Resources:, Hertwich and Peters 2009


  • Design for Sustainability (Bakshi)
  • Integrated design of technological and ecological systems
  • Opportunities for innovation
  • Challenges in reducing ecological overshoot
  • Applications to biofuels and habitats
  • Resources: Urban and Bakshi, 2013

Solution approaches, opportunities, and limitations (Gutowski)

  • Substitution, efficiency, and end-of-pipe treatment
  • Ecological restoration, demand reduction
  • Examples of what works, limitations, and challenges
  • Solution approaches continued (ALL)

Discussion (ALL)
Final thoughts, open discussion, distribution of certificates

References are listed on this page so that participants can read further if desired. The textbook will be handed out on the first day of class.

“Text” refers to:
Bakshi, B. R., Gutowski, T. G., and Sekulic, D. P., Thermodynamics and the Destruction of Resources, Cambridge University Press, Cambridge, UK, 2011. This will be given out on the first day of class.

Suggested pre-reading resources include:

Allwood, J. M., and Cullen, J. M., Sustainable Materials – With Both Eyes Open, UIT Cambridge Ltd., UK, 2012.

Ashby, M. F., Materials and the Environment, Second ed. Butterworth-Heinemann, London, 2013.

Gutowski, T. G., Sahni, S., Allwood, J., Ashby, M., Worrell, E., The Energy Required to Produce Materials: Constraints on Energy Intensity Improvements, Parameters of Demand, Phil. Trans. R. Soc. A. 371, 2013.

Hendricson, C. T., Lave, L. B., and Matthews, H. S., Environmental Assessment of Goods and Services; An Input-Output Approach, Resources for the Future, 2006.

Hertwich, E. G., Peters, G. P., Carbon Footprint of Nations: A Global Trade-linked Analysis, Env. Sci. Technol. 43, 6414-6420, 2009.

Rockström, J., Safe Operating Space for Humanity, Nature, Vol. 461, 24 Sept. 2009.

Smil, V., Energy in Nature and Society, General Energetics of Complex Systems, The MIT Press, Cambridge, MA, 2008.

Urban, R. A., Bakshi, B. R., Techno-Ecological Synergy as a Path Toward Sustainability of a North American Residential System, Env. Sci. Technol., 47, 2985-1993, 2013.

Course Schedule: 

View 2017 Course Schedule (pdf)

Class runs 9:00 am - 4:45 pm each day except for Wednesday when it ends at 4:00 pm. Each session is 1.5 hours, except for the final session which is only 45 minutes long. There are 15 minute breaks at 10:30 am and 3:00 pm and 1 hour and 15 minutes for lunch. On the final day lunch will be provided.

Evening activities, including dinner on Tuesday, are included in tuition.

Participants’ Comments: 


"The course materials (slides) provided a summary while the textbook provided comprehensive information about the subject. I found both of them very useful and continue to refer to them at work."


"My experience at MIT this summer was fantastic. Taking this class allowed me to get re-energized about the topic of sustainability and to increase my understanding of some technical topics. I look forward to participating in future Short Programs at MIT."


"I will start using the knowledge gained in order to improve the analysis tools and schemes in place for corporate reporting and environmental project evaluation and management."


"It was a wonderful opportunity to broaden my perspective to the issue of sustainability and lifecycle improvement. I met very interesting people with whom I will communicate in the future to achieve creating knowledge networks in order to develop research projects and continue working about this subject."


"The faculty are wonderful people who clearly care a great deal about the subject matter and are inspired to share it with students. I really loved the dinner we had together and other opportunities for individual conversations. I also liked how they encouraged class participation in discussion and questions. I left with very warm feelings about this class and the faculty. Thank you!"



This course takes place on the MIT campus in Cambridge, Massachusetts. We can also offer this course for groups of employees at your location. Please complete the Custom Programs request form for further details.


Fundamentals: Core concepts, understandings, and tools (30%) 30
Latest Developments: Recent advances and future trends (25%) 25
Industry Applications: Linking theory and real-world (30%) 30
Other: Decision making and designing for change (15%) 15


Delivery Methods: 

Lecture: Delivery of material in a lecture format (60%) 60
Discussion or Groupwork: Participatory learning (20%) 20
Labs: Demonstrations, experiments, simulations (20%) 20




Introductory: Appropriate for a general audience (25%) 25
Specialized: Assumes experience in practice area or field (55%) 55
Advanced: In-depth explorations at the graduate level (20%) 20