Additive Manufacturing: From 3D Printing to the Factory Floor

After more than 25 years of research and development, there is now immense industrial and consumer interest in additive manufacturing (AM) and its potential implications ranging from ubiquitous personal fabrication to the reconfiguration of global supply chains. This course presents a comprehensive introduction to AM, including: fundamentals, applications, and technology trends.  

Participants will learn AM processes for polymers, metals, composites, and biomaterials, and will realize how AM’s capabilities (rate, cost, quality) are determined by the material characteristics, process parameters, and machine designs. Applications including aerospace components, electronics, medical devices, and consumer products will be discussed via detailed examples and case studies. Particular emphasis will be placed on AM technologies for metals and other advanced materials, and their related design principles and qualification approaches. Lab sessions will provide hands-on experience with a variety of state-of-the-art AM equipment. Participants will design, fabricate, and measure test parts, and will perform experiments to explore process limits. The course will conclude with discussion of how AM will influence existing business models in product design, manufacturing, and logistics, and will identify major opportunities and needs for advancement.

Earn a Professional Certificate in Innovation and Technology

Additive Manufacturing: From 3D Printing to the Factory Floor may be taken individually or as an elective course for the Professional Certificate Program in Innovation and Technology.

Lead Instructor(s): 

John Hart

Dates: 

Jul 31, 2017 - Aug 4, 2017

Course Length: 

5 Days

Course Fee: 

$4,900

CEUs: 

3.3

Status: 

  • Open

It is highly recommended that you apply for a course at least 6-8 weeks before the start date to guarantee there will be space available. After that date you may be placed on a waitlist. Courses with low enrollment may be cancelled up to 4 weeks before start date if sufficient enrollments are not met. If you are able to access the online application form, then registration for that particular course is still open.

This course has limited enrollment. Apply early to guarantee your spot.

Participant Takeaways: 

Participants of this course will:

  • Learn the fundamentals of additive manufacturing (AM) of polymers, metals, and ceramics, along with those for emerging materials (e.g., nanocomposites, biomaterials) and complex architectures.
  • Understand the operating principles, capabilities, and limitations of state-of-the-art AM methods, including laser melting, fused deposition modeling, stereolithography, and jetting.
  • Become familiar with the complete workflow of AM, including computational design tools, file formats, toolpath generation, scanning, and microstructure characterization.
  • Understand key design rules for parts made by AM, and compare and contrast AM processes with conventional manufacturing methods such as machining and molding in terms of rate, quality, cost, and flexibility.
  • Gain hands-on experience with a variety of AM machines; use these machines to fabricate example parts, post-process the parts, and study the results.
  • Study applications of AM across industries, including aerospace/automotive, medical devices, energy, electronics, and consumer products.
  • Via examples and case studies, understand how to quantitatively assess the suitability of AM for an application, and realize how this justification will change as AM improves.
  • Place AM in the context of the evolving manufacturing infrastructure, including advances in robotics, software, logistics, and digitization of data.

Who Should Attend: 

This course will be useful to design engineers, manufacturing engineers, product designers, research engineers, research scientists, managers, VPs of product development and manufacturing, and technology and innovation strategists, from industries such as aerospace, automotive, medical devices, electronics, consumer products, energy, and robotics. The course material is accessible for those new to AM, yet highly comprehensive and valuable for those who already have significant experience with AM.

Computer Requirements:

Laptops or tablets are encouraged for this course.

Program Outline: 

Day 1: (9.30 am - 5.30 pm)

AM:

  • Introduction to additive manufacturing (AM)
  • AM technology and market landscape
  • Emerging trends and business models

Lunch: Participant introductions; discussion of course schedule

PM:

  • Hands-on lab: Anatomy of AM machines
  • Design case study part I
  • AM parts to conventional processes

Day 2: (8.30 am - 5.30 pm)

AM:

  • Extrusion AM processes (polymers and composites)
  • Photo-polymerization AM processes (polymers and ceramics)

Lunch: Jetting and lamination AM processes

PM:

  • Hands-on lab: Fused deposition modeling (FDM) and stereolithography (SLA)
  • Mechanics of polymer AM parts
  • Design case study part II

Day 3: (8.30 am - 5.30 pm)

AM:

  • AM of metals: Selective laser melting, e-beam melting, direct powder deposition

Lunch: Qualification of AM parts, with focus on metals

PM:

  • Hands-on lab: selective laser melting
  • Hands-on lab: 3D scanning
  • Geometry and property optimization

Day 4: (8.30 am - 5.30 pm)

AM:

  • Design rules for AM
  • Industry focus: Aerospace components, medical implants, tooling, and consumer goods (includes guest speakers)

Lunch: Continued discussion of industry applications and needs

PM:

  • Integration of AM and electronics
  • AM of biomaterials and tissues
  • Design case study part III

Day 5: (8.30 am -1.30 pm)

AM:

  • Group case-study presentations
  • Future trends and implications of additive manufacturing: logistics, mass-customization, and emerging business models.

Lunch: Continued discussion and wrap-up

Course Schedule: 

View 2017 Course Schedule (pdf)

Class runs 9:30 am - 5:30 pm on Monday, and 8:30 am - 5:30 pm the rest of the week, except Friday, when it ends at 1:30 pm.

Participants’ Comments: 

CERAMIC ENGINEER, DEFENSE INDUSTRY

"We are creating an additive manufacturing plan for the future and the material learned in this course will be invaluable for this exercise."

INDEPENDENT MANAGEMENT CONSULTANT

"The professor gave an excellent review of all of these complex subject matters in a short time. He was able to tailor it for the novice as well as for experts in various subject areas."

HEAD OF INNOVATION, ADVANCED MATERIALS INDUSTRY

"Rich content and great delivery."

PRESIDENT, TECHNICAL CONSULTING FIRM

"I got an excellent understanding of the scope and state-of-the-art for AM covering the full range of materials and mega to nano applications."

BUSINESS INNOVATION MANAGER, MEDICAL DEVICE INDUSTRY

"I feel like an expert now."

MECHANICAL ENGINEER, TRANSPORTATION INDUSTRY

"If you want to get up to speed on AM in just a week, I don't think there is a better way to do it."

MECHANICAL ENGINEER, ENERGY INDUSTRY

"The course covered everything in explicit detail."

Instructors: 

Location: 

This course takes place on the MIT campus in Cambridge, Massachusetts. We can also offer this course for groups of employees at your location. Please complete the Custom Programs request form for further details.

Content: 

Fundamentals: Core concepts, understandings, and tools (40%) 40
Latest Developments: Recent advances and future trends (30%) 30
Industry Applications: Linking theory and real-world (30%) 30

Delivery Methods: 

Lecture: Delivery of material in a lecture format (50%) 50
Discussion or Groupwork: Participatory learning (25%) 25
Labs: Demonstrations, experiments, simulations (25%) 25

Levels: 

Introductory: Appropriate for a general audience (35%) 35
Specialized: Assumes experience in practice area or field (50%) 50
Advanced: In-depth explorations at the graduate level (15%) 15