Olivier L. de Weck

Olivier de Weck is an international leader in Systems Engineering research. He focuses on how complex man-made systems such as aircraft, spacecraft, automobiles, printers, consumer products, and critical infrastructures are designed, manufactured, and operated and how they evolve over time. His main emphasis is on the strategic properties of these systems that have the potential to maximize lifecycle value. His group has developed quantitative methods and tools that explicitly consider manufacturability, commonality, flexibility, robustness, and sustainability among other characteristics. Significant results include the Adaptive Weighted Sum (AWS) method for resolving tradeoffs amongst competing objectives, the Delta-Design Structure Matrix (DDSM) for technology infusion analysis, Time-Expanded Decision Networks (TDN), and the SpaceNet and HabNet simulation environments. These methods have impacted complex systems in space exploration (NASA, JPL), oil and gas exploration (BP) as well as sophisticated electromechanical products (e.g. Xerox, Pratt & Whitney, GM, DARPA).

de Weck has authored three books and 250 peer-reviewed papers to date. He is a Fellow of INCOSE and an Associate Fellow of AIAA. Since January 2013, he has served as Editor-in-Chief of the journal Systems Engineering. In 2006, he received the Frank E. Perkins Award for Excellence in Graduate Advising followed by the 2010 Marion MacDonald Award for Excellence in Mentoring and Advising and a 2012 AIAA Teaching Award. From 2008-2011 he served as Associate Director of the Engineering Systems Division (ESD) at MIT. From 2011 to 2013 he served as Executive Director of the MIT Production in the Innovation Economy (PIE) project. He currently leads the MIT Strategic Engineering Research Group.

Olivier L. de Weck